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Drops formed from the breakup of charged cylindrical liquid jets have been 
shown to be smaller than those formed in the unelectrified case. This change 
has been related to electrically induced instabilities on the jet. Small-perturba- 
tion analysis was used to formulate the Lagrangian and write the differential 
equation for the jet. Non-dimensionalized plots of the solutions exhibit the stabil- 
izing or destabilizing influences of surface tension and electric effects, and allow 
these influences to be related back to liquid physical properties. Drop diameter 
to be expected from breakup of the electrified jet was calculated as a function 
of jet diameter, physical properties of the liquid, jet electrification, and the mode 
of instability dominating the breakup process. 

Introduction 
The effect of induced charges on liquid jets has been a subject of study for many 

years. Rayleigh (1878) analyzed the axisymmetrical instability of flowing jets 
and showed that they disintegrated into drops corresponding to the wavelength of 
fastest growth. Basset ( 1894) calculated the stability of axisymmetrical waves on 
conducting jets, including the effects of charge, velocity, viscosity, and ambient 
fluid. Schneider et al. (1967) extended Rayleigh’s analysis by including the effect 
of electric charge and indicated that their result was in agreement with Basset’s 
more comprehensive study. Recently, Taylor ( 1969) considered the lowest mode 
of instability which causes non-axisymmetric waves on the charged jet. 

Limited experimental work has been accomplished with charged cylindrical 
jets. Magarvey & Outhouse (1962) examined the spectrum of instabilities ex- 
hibited by charged water jets but did not relate them to theory; they also made 
qualitative observations concerning the decrease in drop size resulting from the 
length-extension instability occurring at  high electrification of the jet. Schneider 
et al. (1967) were concerned with producing uniform sized charged droplets from 
electrified water jets. Consequently, their investigation was limited to the axi- 
symmetric mode of jet breakup, with droplet size controlled by an applied 
driving frequency. Huebner (1969, 1970) investigated the relationship of jet 
instabilities to jet diameter, jet flow rate, and liquid properties, and quantified the 
observed decrease in drop size with increasing jet electrification. 

In this paper, previous analyses are extended to incorporate a description of 
non-axisymmetric instabilities of arbitrary wave-number, as well as the axi- 
symmetric instability. The results are compared, in the appropriate limit, to 
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those reported previously. The relative influence of the surface tension and elec- 
trical terms is particularly emphasized. 

This comprehensive analysis is applied to drop formation from electrified jets 
and is employed to suggest the manner in which electrification causes decreased 
drop size. Direct comparison of experimental and predicted drop sizes is not 
possible because the infinite cylindrical geometry assumed in the analytical model, 
and essential to the success of a general theoretical treatment, conflicts with 
the requirements of the experimental setup. The analysis thus represents a 
limiting case for comparison with experimental results, and provides a mechan- 
ism for considering the influence of geometry and applied potential on drop 
formation from eIectrified jets. 

Theoretical analysis 
The shapes of the two modes, m = 0 and m = 1, are sketched in figures 1 and 2, 

together with some of the nomenclature used. The surface of the perturbed 
cylinder is represented by the equation 

(1) r ,  = a, + c cos m6' cos kx, 

where c is proportional to ewt and a, is related to the original jet radius a by the 
requirement that the volume of liquid per wavelength A( = 27r/k) remains un- 
changed, i.e. 

1 P A  P 2 n  

c,  whose motion is to be studied, characterizes the infinitesimal deviation from 
the cylindrical shape, so that (c/a) < 1 ; m and k are the circumferential and longi- 
tudinal wave-numbers, respectively, and o characterizes the growth rate of the 
wave. 

Following Rayleigh and Schneider et al., we develop the Lagrange equation of 
motion for the generalized co-ordinate c. It is assumed that the potential on the 
surface of the jet is constant at  V, and that, concentric to the unperturbed jet and 
at a distance b from its axis, is a grounded cylindrical electrode. The potential in 
the region between the unperturbed jet and the electrode is given by 

There is an additional component of the potential, V,, due to the perturbation. 
This component satisfies the Laplace equation VV, = 0. Writing 

V, = R(r )  cos m6' cos kz, 

it follows that 

Thus R(r )  = AIm(kr) +BK,(kr), 

where I, and K ,  are the modified Bessel functions of the first kind and the second 
kind, respectively, both of integral order m. 
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Using the boundary condition V, = 0 at r = b 
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The potential in the region between the perturbed jet and the electrode is there- 
fore given by 

FIGURE 1. Axisymmetric mode of jet instability, circumferential 
wave-number rn = 0. 
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where the constant A is to be determined from the boundary condition on the 
perturbed surface of the jet. 

At 

Hence 
r = ro = a, + c cos me cos kz M a( 1 + (c /a)  cos mecos kz), V = 5. 

K,( ka) cos me cos kz. 1 
Thus 

This expression is correct up to first order in (c/a). 

b 

FIGURE 2. Lowest-order non-axisymmetric mode of jet instability, 
circumferential wave-number m = 1. 
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The potential energy of $he jet due to electrification is 

PL = g+dS 

and the surface charge density is calculated from 
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where 

and eo is the permittivity of free space. Also 

Hence 

where 80.m = 1 for rn = 0, and c?~,, = 0 otherwise. The potential energy of the 
unperturbed cylinder is 

m0v; Po = +QCLV0 = - In (bla)’ 

where QcL = 27re0&/1n @/a) is the charge per unit length of the unperturbed 
cylinder. Therefore 

represents the electrical energy change of the jet above, without considering that 
of the charging system. The latter is ( - 2Pz) SO that the total change in electrical 
energy is PR = - Pg. The change in the potential energy due to surface tension, 
PT, and the kinetic energy, K ,  have already been given by Chandrasekhar 
(1961). They are, per unit length 

and 

where T is surface tension and p is liquid density. 
Using the Lagrangian L = K - PT - PR in the Lagrangian equation yields 

[1+ kaI] c = 0.  .. T (1 - m2 - k2a2) (La) I&(ka) ~ o V i ( k ~ )  I&(ka) ] C+pa41n(b/a) I,(ka) c-- [ 
Pa3 Irn(ka) 
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( 1 - m2 - k2a2) (ka) I;( ka) 
Irn(ka) 

using I M Kh(ku)/Krn(ku) for large b/a. This can be written in the non-dimensional 
form 

with 

C . a %  I2 - 1  - \< \ :  2 

7 - A 1; - 2na - - 
-0.05 - - - - - -(Surface tension term) 
-0.10 - - - - - 
-0.15 - 

FIGURE 3. Stability diagram for an electrified cylindrical liquid jet with m = 0. The para- 
meter measuring the ratio of electrical influence to surface tension influence on instability, 
I’ = 0.3. Positive w2/ (T /paS)  represents wave growth and negative w2/ (T /pa3)  represents 
oscillatory motion. 

The dispersion relationship (4) reduces to 

[l-kaK,(klEj K1(ku)l (6) 
T (1  - kza2) (ka) I1(ka) - s o V ; ( k ~ )  I,(ka) 

0 2  = - 
Pa3 I O ( W  pa41n (bla) Io(ka) 

for m = 0 and using Ih(ka) = Il(ku), Kh(ka) = -K,(ka). Equation (6) agrees 
with the result obtained by Schneider et al., and with the earlier result of Basset 
as corrected recently by Taylor. (Basset’s original result is not dimensionally 



Instability and breakup of charged liquid j e t s  367 

correct; the change introduced by Taylor rectifies this error.) Writing the disper- 
sion relationship for the case m = 1 yields 

(7) 
T k3a31i(ka) - e,Vg(ka) I i ( k a )  

pa3 Il(ka) pa41n @/a)  I l (ka)  
0 2  = -- 

which is in agreement with the result obtained by Taylor for this case. 

FIGURE 4. Stability diagram for an electrified cylindrical liquid jet 
(m = 0, r = 6). 

Numerical results obtained from equation ( 5 )  for the axisymmetric mode 
m = 0 and for two values of r are shown on figures 3 and 4; these values of I? 
correspond to very slight and to moderate electrification, respectively. The 
electrical and surface tension terms are plotted separately, as well as the sum of 
the two, for convenience in analyzing the relative influence of the two terms. 
Similar results for the kink mode m = 1 are shown on figures 5 and 6. Positive 
w2 represents wave growth and negative u2 represents oscillatory motion; 
therefore, the part of the curve lying above the abscissa represents instability, 
and that lying below the abscissa represents stability. The exception is the curve 
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representing surface tension on figure 3, which was plotted inverted so that it 
could be distinguished from the sum curve. 

The way in which the electrical charge causes a reduction in drop size is made 
clear by comparing figures 3 and 4, and also figures 5 and 6. In figure 3, for example, 
although the electrical charge stabilizes the jet slightly for h/2na > 1.66, it 
destabilizes the jet substantially for h/27ra < 1.66. The effect is to shift the 
maximum from about h/2na = 1.4, the well-known result for an uncharged jet, 

FIGURE 7.  Variation of longitudinal wavelength of the jet instability, at maximum 
growth rate, with electrification for: 0, m = 0; and v, m = 1. 

down slightly to about 1-3, with an attendant slight increase in the non-dimen- 
sional growth rate, w2/(T/pa3), from 0.12 to 0.13. The trend continues with in- 
creasing values of I? as indicated on figure 4 and in the summary of calculated 
results for m = 0 presented on figure 7. Before the stabilizing influence of the 
electric charge can be realized at  longer wavelengths, the jet becomes destabilized 
at shorter wavelengths. Moreover, the phenomenon is more pronounced the 
higher the charge. 

For the m = 0 mode, the effect of surface tension is stabilizing for h/2na < 1 
and destabilizing for h/2na > 1, whereas the effect of electric charge is stabilizing 
for h/2na > 1-66 and destabilizing for h/27ra < 1.66. For the m = 1 mode there 
are no such cut-off wavelengths. Surface tension stabilizes and electric charge 
destabilizes the jet, as indicated on figures 5 and 6. The magnitude of the electri- 
fication in figure 5 is quite small, so that surface tension dominates at  all wave- 
lengths and the jet is stable. With increasing jet electrification, the increased 
influence of the electric term destabilizes the jet more and more pronouncedly, 
as indicated on figures 6 and 7. At moderate jet electrification there is no 
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pronounced wavelength of fastest growth (figure 6) ,  but the curve representing 
the sum of the electric and surface tension effects develops a more pronounced 
maximum with increasing jet electrification. 

Drop formation from charged jets 
Rayleigh calculated for the growth constant of an unelectrified cylindrical jet 

This is the limiting form of equation (4) when the jet is not electrified. The func- 
tion f ( k a )  presents a maximum for ka = 2na/h = n14.51, or hl2na = 1.4, cited 
earlier; the wavelength of the fastest growing perturbation is thus h = 4.51 x 2a. 
Dabora (1967) has shown further that the diameter d of the drops most likely 
to be formed by jet breakup, where the drop mass is considered equivalent to 
that of a one-wavelength-long cylinder of the jet, is given by the well-known 
result d = 1.89 x 2a. 

This procedure for calculating drop sizes gives a particularly simple result 
because both m and r vanish. When one or both of these does not vanish, the 
calculation is modified as follows. Following Dabora, the drop mass, 7rpd3/6, 
is equated to that of a one-wavelength-long cylinder, 7rpa2h. Rearrangement 
gives for the diameter of the drops formed from the wavelength of most rapid 
growth 

The value of (h/27ra)ia,, for given electrical conditions, liquid properties, and 
jet radius, is determined for the appropriate mode from a plot such as that of 
figure 7. 

Discussion 
The range of values of I? shown on figure 7 lies within the range of values 

employed experimentally (Huebner 1969, 1970). (Applied potential was varied 
from 0 to 25 kV, while a and the ratio b/a were varied by about a factor of 10.) 
The anomalously large drops associated with the m = 1 mode for small I? are not 
observed (the m = 1 mode itself is not observed) because the growth rate of the 
m = 0 mode is larger. The wavelength and drop size associated with m = 0 and 
m = 1 become equal at  about the same value of r for which the growth rate of 
the m = 1 mode crosses over that for the m = 0 mode. The values of ( A / 2 7 r ~ ) ~ ~ ~ ~  
on figure 7 for the m = 0 mode are therefore appropriate for use in calculating 
drop size from equation (S), even when the actual mode of jet disintegration is 
the kinkmodem = 1. 

The ratio of drop diameter to jet diameter calculated in this way for the m = 0 
and m = 1 modes is shown as a function of the electrification parameter I' on 
figure 8. These calculated values represent the limiting case of drop size reduction 
produced by electrification of the jet, assuming the instability leading to jet 
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breakup to be of the type considered in the theoretical model. That is, instabilities 
in which the wall of the jet ruptures or jet surface-growth occurs are not limited 
to drop size reductions consistent with the calculated curve and will, in general, 
yield smaller drop sizes, as observed by Magarvey & Outhouse (1 962) and Huebner 
(1969, 1970). Recognizing this restriction, the calculated values of d/dj  represent 

_ -  

I ! 1 I I I I 1 1 

7 - 12 14 16 18 0 4 6 8 10 

r 
FIGURE 8. Calculated and experimental drop size variation with electrification 

form=Oandm= 1. 

the limiting case of drop size reduction, for a given value of I?, because electric 
potential is appliedwithmaximum efficiency when theinfhite cylindricalgeometry 
assumedin the theory is applicable. Experimentally, of course, this is not the case. 
In our earlier experiments, for example, the geometry of the liquid collector 
was determined by the requirements that all drops be collected and that there 
be visual and photographic observation of jet breakup and drop dynamics. The 
result was a collector that conformed to the subsequently developed theoretical 
model relatively poorly. A plot of data obtained with this collector is shown as 
curve A of figure 8. The data points defining the plotted curve were obtained from 
experiments conducted with three jet diameters and two liquids, distilled water 
and isopropyl alcohol. These experimental data lie substantially above the cal- 
culated curve, consistent with the preceding remarks. Nevertheless, decrease in 
drop diameter of 25 per cent or more is achievable at  reasonable applied potential. 

After completion of the theoretical analysis, a new collector was constructed 
having approximately the same length but one-half the diameter of the previous 
collector so that the relative influence of the sides of the collector were increased 
with respect to the bottom. Failure to collect drops could be completely avoided 

24-2 
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by limiting the potential applied to the jet to values below those at  which surface- 
growth instabilities occur. Slits still had to be cut in the collector for observation 
of the jet distintegration and drop formation, but these were kept quite narrow. 
Great care was taken to minimize edge effects at the open end of the collector 
during test. Thus, this second collector was designed and used to obtain a closer 
approximation to the theoretical model, but, for purposes of experimental con- 
venience, it was not attempted to duplicate the theoretical model as closely as 
possible. Data obtained with this collector using jets of distilled water are pre- 
sented as curve B on figure 8. The approach to the calculated curve is consider- 
ably better than with the original collector, but the data still lie above the theo- 
retical predictions, as expected. 

Although the decrease in drop size indicated by the experimental curves on 
figure 8 is substantial, even closer approach to the calculated result is possible 
in many applications. In combustion applications, for example, slits in the col- 
lector are not required and there is no need to collect drops. Only edge effects 
remain to decrease the effectiveness of the applied potential, and these can be 
made quite small. With this relaxation of restrictions, the geometry (e.g. the 
ratio b/a) may be chosen to obtain drop size decreases equivalent to those plot- 
ted on figure 8 at lower applied potentials than those required for the experimental 
data cited. 

This research was sponsored by the Office of Naval Research under Contract 
N00014-674-0474, Contract Identification no. NR094-348. 
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